Unsupervised learning eigenstate phases of matter

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

The quantum phases of matter

I present a selective survey of the phases of quantum matter with varieties of manyparticle quantum entanglement. I classify the phases as gapped, conformal, or compressible quantum matter. Gapped quantum matter is illustrated by a simple discussion of the Z2 spin liquid, and connections are made to topological field theories. I discuss how conformal matter is realized at quantum critical point...

متن کامل

Learning Unsupervised Learning Rules

A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this goal is approached by minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise as a side effect. In this w...

متن کامل

Unsupervised Learning

Unsupervised learning studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. By contrast with SUPERVISED LEARNING or REINFORCEMENT LEARNING, there are no explicit target outputs or environmental evaluations associated with each input; rather the unsupervised learner brings to bear prior b...

متن کامل

Unsupervised Learning

We give a tutorial and overview of the field of unsupervised learning from the perspective of statistical modelling. Unsupervised learning can be motivated from information theoretic and Bayesian principles. We briefly review basic models in unsupervised learning, including factor analysis, PCA, mixtures of Gaussians, ICA, hidden Markov models, state-space models, and many variants and extensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2019

ISSN: 2469-9950,2469-9969

DOI: 10.1103/physrevb.100.075102